

 Navigation

 	
 index

 	
 next |

 	MptcpAnalyzer 0.2 documentation

Welcome to MptcpAnalyzer’s documentation!

This is the manual of mptcpanalyzer, a python based linux tool to help plot some characteristics of an multipath TCP connection based on network traces (*.pcap files).

This document is written in reStructuredText [http://docutils.sourceforge.net/rst.html] for Sphinx [http://sphinx.pocoo.org/] and is maintained in the
docs/ directory of the package source code.

mptcpanalyzer uses semantic versioning [http://semver.org/] .

You can reference mptcpanalyzer via the following Digital Object Identifier:
[![DOI](https://zenodo.org/badge/21021/lip6-mptcp/mptcpanalyzer.svg)](https://zenodo.org/badge/latestdoi/21021/lip6-mptcp/mptcpanalyzer)

Contents:

	Introduction
	Features

	How to install ?

	How does it work (internals) ?

	Usage
	Interactive mode

	Batch mode

	One-shot mode

	Tips

	Conversion from pcap to csv:

	List of available plots

	Configuration

	How to contribute to mptcpanalyzer ?
	Develop an mptcpanalyzer plugin

	API

	FAQ

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Matthieu Coudron.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MptcpAnalyzer 0.2 documentation

Introduction

Features

	list the MPTCP connections in the pcap

	display some statistics on a specific MPTCP connection (list of subflows etc...)

It accepts as input a capture file (*.pcap) and depending on from there can :
* pcap to csv conversion
* plot data sequence numbers for all subflows
* XDG compliance [http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html], i.e.,

mptcpanalyzer looks for files in certain directories. will try to load your configuration from $XDG_CONFIG_HOME/mptcpanalyzer/config

	caching mechanism: mptcpanalyzer compares your pcap creation time and will
regenerate the cache if it exists in $XDG_CACHE_HOME/mptcpanalyzer/<path_to_the_file>

	support 3rd party plugins (plots or commands)

Most commands are self documented and/or with autocompletion.

Then you have an interpreter with autocompletion that can generate & display plots such as the following:

![Data Sequence Number (DSN) per subflow plot](examples/dsn.png)

How to install ?

First of all you will need a wireshark version that supports MPTCP dissection,
i.e., wireshark > 2.1.0. If you are on ubuntu, there are dev builds on
https://launchpad.net/~dreibh/+archive/ubuntu/ppa/.

Once wireshark is installed you can install mptcpanalyzer via pip:

command:$ python3.5 -mpip install mptcpanalyzer –user

python3.5+ is mandatory since we rely on its type hinting features.
Dependancies are (some will be made optional in the future):

	stevedore [http://docs.openstack.org/developer/stevedore/] to handle the
plugins architecture

	the data analysis library pandas [http://pandas.pydata.org/] >= 0.17.1

	matplotlib [http://matplotlib] to plot graphs

	(lnumexpr to run specific queries in pandas)

How does it work (internals) ?

mptcpanalyzer consists of small python scripts. the heavy task is done by wireshark.
It relies on tshark (terminal version of wireshark) to convert pcap to csv files.

It accepts as input a pcap (or csv file following a proper format).
Upon pcap detection, mptcpanalyzer the formats supported by tshark (terminal version of wireshark).

 Copyright 2016, Matthieu Coudron.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MptcpAnalyzer 0.2 documentation

Usage

This package installs 2 programs:
- mptcpanalyzer to get details on a loaded pcap.

	mptcpanalyzer can run into 3 modes:

	
	Interactive mode (default): an interpreter with some basic completion will accept your commands.

	Batch mode if a filename is passed as argument, it will load commands from this file.

	One-shot mode, it will consider the unknow arguments as one command, the same that could be used interactively

For example, we can load an mptcp pcap (I made one available on wireshark wiki [https://wiki.wireshark.org/SampleCaptures#MPTCP] or in this repository, in the _examples_ folder).

It expects a trace to work with. If the trace has the form XXX.pcap extension, the script will look for its csv counterpart XXX.pcap.csv. The program will tell you what arguments are needed. Then you can open the generated graphs.

Interactive mode

Run $ mptcpanalyzer –load examples/iperf-mptcp-0-0.pcap. The script will try to generate
a csv file, it can take a few minutes depending on your computer.
Then you have a command line: you can type ? to list available commands. You have for instance:

	lc (list connections)

	ls (list subflows)

	plot

	...

help ls will return the syntax of the command, i.e. ls [mptcp.stream] where mptcp.stream is one of the number appearing
in lc output.

Some more complex commands can be:

	1
2
3
4

	load --regen examples/iperf-mptcp-0-0.pcap
plot attr 0 Client dsn
plot attr 0 Client dsn --title "custom title" --out test_with_title.png
plot attr 0 Client dsn --skip 1 --skip 3 --style examples/red_o.mplstyle --title "Test with matplotlib colors" --out test_title_style.png

Batch mode

Commands are the same as in Interactive mode, they are just saved in a file.

mptcpanalyzer --batch tests/batch_commands.txt -dddd

One-shot mode

Just put your command after your arguments, for instance.

mptcpanalyzer --load examples/iperf-mptcp-0-0.pcap`

Tips

mptcpanalyzer is a rather long name so feel free to create an alias for instance alias mp="mptcpanalyzer".

To enable debug informations, run mptcpanalyzer -dddd

If you use zsh, you can enable autocompletion via adding to your .zshrc:

compdef _gnu_generic mptcpanalyzer

Conversion from pcap to csv:

mptcpanalyzer comes bundled with an extra program: mptcpexporter can convert a pcap to csv (exporting to sql should be easy).
Run mptcpexporter -h to see how it works.

List of available plots

 Copyright 2016, Matthieu Coudron.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MptcpAnalyzer 0.2 documentation

Configuration

mptcpanalyzer accepts few parameters that can be recorded in a configuration file.
The file can be specified on the command line via the ‘–config’ (or ‘-c’) switch:

Editing config

$ mptcpanalyzer --config myconfig.cfg

By default, mptcpanalyzer will try to load the config file in the following order:

	$XDG_CACHE_HOME/mptcpanalyzer/config, then in

	$HOME/.config/mptcpanalyzer/config

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	# this is an exhaustive example of a configuration for mptcpanalyzer
mptcpanalyzer loads automatically the file in "$XDG_CONFIG_HOME/mptcpanalyzer/config"

[DEFAULT]
If you have several installations of tshark, then you can put the fullpath here
tshark_binary = tshark

by default, look into ${XDG_CACHE_HOME:.config}/mptcpanalyzer/config
cache = /tmp

in case you want to export special options
wireshark_profile = default

TODO add example
style0 =
style0 =
style2 =
style3 =

	delimiter is the csv separator used by tshark [http://wireshark.org] when exporting the pcap

	styleX follow matplotlib conventions to set lines color/style

	tshark_bin in case you want to run a specific tshark binary

 Copyright 2016, Matthieu Coudron.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MptcpAnalyzer 0.2 documentation

How to contribute to mptcpanalyzer ?

There are several things you can do:

	submit bug reports in our tracker [https://github.com/lip6-mptcp/mptcpanalyzer/issues]

	Develop an mptcpanalyzer plugin, if you do, please warn us so that we can add you to the list of plugins

	Send patches [https://github.com/lip6-mptcp/mptcpanalyzer/pulls] to either fix a bug, improve the documentation or flake8 compliance

Develop an mptcpanalyzer plugin

mptcpanalyzer [https://github.com/lip6-mptcp/mptcpanalyzer/] can load plugins following stevedore’s plugin [http://docs.openstack.org/developer/stevedore/tutorial/creating_plugins.html#adding-plugins-in-other-packages], i.e. mptcpanalyzer will look for specific disttools entry points
in order to find and load plugins.

To add a plugin, just mimic what is done for existing plugins, see stevedore’s
plugin documentation plus check our setup.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	 'mptcpanalyzer.plots': [
 'attr = mptcpanalyzer.plots.dsn:PerSubflowTimeVsAttribute',
 'interarrival = mptcpanalyzer.plots.dsn:InterArrivalTimes',
 'xinterarrival = mptcpanalyzer.plots.dsn:CrossSubflowInterArrival',
 'dss_len = mptcpanalyzer.plots.dsn:DssLengthHistogram',
 'dss = mptcpanalyzer.plots.dsn:DSSOverTime',
 'owd = mptcpanalyzer.plots.owd:OneWayDelay',
 'ns3 = mptcpanalyzer.plots.ns3:PlotTraceSources',
],
 # namespace for plugins that monkey patch the main Cmd class
 'mptcpanalyzer.cmds': [
 'stats = mptcpanalyzer.command_example:CommandExample',
]

mptcpanalyzer will load all plugins residing in these two namespaces:

	mptcpanalyzer.plots

	mptcpanalyzer.cmds

regardless of which python package they belong

In order to test while modifying mptcpanalyzer, you can install it like this:

$ python3.5 setup.py develop --user

Note

Add –uninstall to remove the installation.

Develop a new plot

You must create a new class that inherits from mptcpanalyzer.plot.Plot
(or one of its children).
Then you most likely need to override.

Develop a command plugin

Just follow the example in:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	from .command import Command

import logging

"""
While in mptcpanalyzer sources, one can do getLogger(__name__) to retrieve a
(sub)logger, your plugin can be in another package and as such, you have to name
the logger explicitly with mptcpanalyzer.**
"""
log = logging.getLogger("mptcpanalyzer")

class CommandExample(Command):
 """
 This is just an example of how to write a plugin that will be automatically
 loaded by mptcpanalyzer.

 """
 def do(self, data):
 """
 :param data: This is the line passed by the user to the interpreter
 """
 print("You wrote: %s" % data)

 def help(self):
 """
 Message printed when the author writes
 """
 print("Prints 'Hello world !' followed by the user message")

 def complete(self, text, line, begidx, endidx):
 """
 To provide autocompletion
 """
 pass

How to upload it to pypy (for the forgetful maintainer)

$ python3.5 setup.py sdist upload

(test first the package locally pip install /path/toarchive.gz)

 Copyright 2016, Matthieu Coudron.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MptcpAnalyzer 0.2 documentation

API

 Copyright 2016, Matthieu Coudron.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	MptcpAnalyzer 0.2 documentation

FAQ

1. What if I have several versions of wireshark installed ?
Copy the config.example in the repository in $XDG_CONFIG_HOME/mptcpanalyzer/config and set
the tshark_binary value to the full path towards the tshark version that supports mptcp dissection.

2. tshark complains about a corrupted pcap
For instance tshark: The file “/home/user/file.pcap” appears to have been cut short in the middle of a packet.
Analyze your pcap with https://f00l.de/pcapfix/.

 Copyright 2016, Matthieu Coudron.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	MptcpAnalyzer 0.2 documentation

Index

 Copyright 2016, Matthieu Coudron.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		MptcpAnalyzer 0.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Matthieu Coudron.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment-close.png

_static/comment.png

_static/up.png

_static/down.png

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

